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Abstract: 

 
Dynamic Gesture Recognition (DGR) has become an essential aspect 

of Human-Computer Interaction (HCI), enabling seamless and 

touchless control across various applications such as virtual reality, 

assistive technologies, and smart home automation. Traditional 

vision-based approaches, which rely on RGB cameras and depth 

sensors, often face challenges such as occlusion, dependency on 

lighting conditions, and privacy concerns. These limitations have led 

to increased interest in alternative sensing technologies, among which 

millimeter-wave (mmWave) radar has gained significant attention. 

MmWave radar offers several advantages over conventional vision- 

based methods. It is highly robust in low-light environments, does 

not compromise user privacy, and can effectively capture micro- 

movements. These characteristics make it a promising solution for 

gesture recognition. However, achieving accurate recognition using 

mmWave radar alone remains challenging due to signal noise, 

limited spatial resolution, and difficulties in distinguishing complex 

hand movements. Gestures are one of the most natural ways humans 

communicate and interact with technology. Compared to camera- 

based or wearable sensor-based solutions, mmWave radar provides a 

contact-free and environment-independent approach to recognizing 

gestures. This makes it particularly useful for applications where 

traditional sensing methods might struggle, such as in dimly lit 

environments or where privacy is a priority. Despite these 

advantages, current gesture recognition methods using mmWave 

radar still face challenges in improving recognition performance and 

adaptability, particularly in short-range applications where fine 

movements need to be accurately detected. To address these 

challenges, a recognition method is developed that not only focuses 

on the overall movement of the hand but also captures subtle finger 

motions. By leveraging multiple perspectives of the hand’s motion 

and integrating various features, the approach enhances the ability to 

distinguish intricate gestures effectively. The method ensures that 

both broad hand movements and finer finger details are considered, 

improving the overall recognition capability. Extensive experiments 

have been conducted using data collected from multiple users, 

demonstrating the effectiveness of this approach. The results 

highlight the potential of mmWave radar for accurate and reliable 

gesture recognition, paving the way for more advanced and user- 

friendly touchless interaction technologies. 
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1. INTRODUCTION 

 
Dynamic gesture recognition using millimeter-wave (mmWave) radar 

is a promising contactless mode of human–computer interaction with 

applications in intelligent homes, autonomous driving, and sign 

language translation. However, existing models often have excessive 

parameters, making them unsuitable for embedded devices. To 

address this, we propose a dynamic gesture recognition method 

(Gesture-mmWAVE) that leverages mmWave radar with multilevel 

feature fusion (MLFF) and a transformer-based model. Our approach 

arranges each frame of the original echo collected by frequency- 

modulated continuous-wave (FMCW) radar in the Chirps × Samples 

format. A 2D fast Fourier transform (FFT) is applied to extract range- 

time and Doppler-time maps while enhancing the signal-to-noise 

ratio through coherent accumulation. 

Despite the advantages of mmWave radar, several challenges persist 

in gesture recognition. Single-radar systems struggle to distinguish 

between similar gestures due to limited spatial resolution, while 

environmental interference and hardware limitations introduce signal 

distortions, reducing accuracy. Additionally, single-sensor setups 

often lack generalizability across different users and scenarios, and 

the computational demands of deep learning models pose constraints 

for real-time processing in practical applications. To overcome these 

challenges, we propose a multi-sensor deep learning framework that 

integrates mmWave radar data with complementary modalities such 

as infrared sensors, inertial measurement units (IMUs), or LiDAR. 

This approach enhances gesture recognition by leveraging multi- 

modal data for improved classification robustness, optimizing deep 

learning architectures—including CNNs, RNNs, and transformers— 

for multi-sensor fusion, and developing adaptive models capable of 

generalizing across users and environments with minimal calibration. 

Furthermore, efficient deep learning models are designed to enable 

real-time gesture recognition suitable for embedded systems. 

The proposed multi-sensor deep learning approach offers several 

advantages, including higher recognition accuracy due to improved 

spatial and temporal feature extraction, increased robustness to 

environmental conditions, and privacy-preserving interaction 

compared to camera-based systems. Additionally, it ensures 

scalability and adaptability, facilitating seamless integration into 

various applications regardless of user-specific variations. These 

advancements make dynamic gesture recognition highly valuable in 

diverse applications, including smart home automation for touchless 

control of appliances, AR/VR navigation for immersive experiences, 

assistive technologies for individuals with disabilities, hands-free 

infotainment control in vehicles, and enhanced human-robot 

collaboration in industrial and robotics applications. By addressing 

existing limitations and improving performance, this approach paves 
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the way for more efficient and accessible gesture-based human- 

computer interaction 

2. LITERATURE SURVEY 

In recent years, with the continuous development of intelligent 

perception and human-computer interaction technologies, gesture 

recognition has received more attention and has been used as a 

convenient approach to human-computer interaction [1] in many 

fields, including smart homes [2], smart vehicles [3], sign language 

communication [4], electronic device control [5], games, and virtual 

reality [6]. In its early stages, gesture recognition usually relies on 

wearable sensors [7], such as data gloves [8], surface 

electromyography sensors [9], accelerometer and gyroscope sensors 

[10], and wearable sensors based on photoplethysmography [11], 

which also have good recognition performance. These sensors are 

able to obtain a wealth of information about the operator’s hand 

movements. However, gesture recognition technology based on 

wearable sensors is cumbersome and expensive, which often leads to 

inconvenience for users and has not been widely used in daily life 

[12]. Therefore, gesture recognition based on contactless sensing has 

attracted more attention, such as computer vision methods using 

RGB and depth images [13] and radio frequency identification based 

on WiFi and radar signals [14]. 

 

A computer vision-based gesture recognition method collects images 

of dynamic gestures and recognizes gestures based on features such 

as appearance, contour, or skeleton of the gesture, which has high 

recognition accuracy [15]. With the advancement of depth sensing 

technology, gesture recognition based on depth cameras such as 

Kinect [16], RealSense [17], and Leap Motion [18] has received 

widespread attention, which can achieve more accurate and robust 

recognition than traditional cameras and can be applied to complex 

3D gesture recognition. Depth cameras can provide real-time tracking 

of gestures and movements, allowing for immediate responses and 

interactions. However, this method is highly dependent on the 

brightness of environmental conditions [19]. To note, it requires 

much computational resources in dynamic gesture recognition [20] 

and brings potential leakage of privacy. The WiFi-based method uses 

Channel State Information (CSI) and Received Signal Strength 

Indicator (RSSI) as features for gesture recognition, but this method 

is susceptible to interference and makes it difficult to recognize 

complex gestures [21]. LiDAR [22] is a sensor that utilizes infrared 

light to determine the distance between the sensor and an object by 

projecting a pulse of laser light, which is highly accurate in ranging 

and has a higher level of safety compared to cameras. In addition, 

LiDAR is not reliant on ambient light and can operate effectively in 

low light or complete darkness. In gesture recognition, LiDAR can be 

used to capture 3D point clouds of hand movements and recognize 

different gestures, enabling touchless interactions with devices or 

virtual environments. However, LiDAR is not sensitive to complex 

gesture changes and is susceptible to occlusions. As a consequence, 

millimeter-wave (mmW) radar-based sensing became an option. 

Millimeter wave radar combines the advantages of microwave radar 

and LiDAR in terms of privacy protection, light robustness, small 

size, low cost, and convenience during gesture recognition [23]. 

Further, mmW radar has a variety of waveforms, such as Continuous 

Wave (CW), Frequency-shift keying (FSK), and Frequency- 

Modulated Continuous Wave (FMCW). FMCW mmW radar offers 

higher accuracy, robustness, and efficiency compared to other 

waveforms, which have been widely used in gesture recognition [24]. 

 

At present, the studies relating to FMCW mmW radar-based gesture 

recognition have achieved certain milestones. For example, in 2015, 

Google’s Soli project implemented proximity micro-motion gesture 

recognition by end-to-end convolutional recurrent neural networks 

based on distance Doppler features using a FMCW mmW radar chip 

at 60 GHz [25], and this study demonstrated the capability of FMCW 

mmW radar for this application of gesture recognition. Although 

there are a number of studies on gesture recognition based on FMCW 

mmW radar, systematic analysis of the current method is scarce.It is 

worth noting that Wu et al. [26] tested the effect of using different 

numbers of receiving antennas (1, 2, and 4) for gesture recognition 

and found that more receiving antennas used to collect gesture data 

can often obtain higher recognition accuracy. This result is also 

consistent with the method we mentioned to improve the angular 

resolution.In addition, dynamic gestures are divided into isolated 

gestures and continuous gestures. This is a definition of gesture types 

based on coherence. Currently, most of the research on gesture 

recognition based on radar sensors uses isolated gestures [27]. 

 

This is due to the fact that isolated gestures have significant action 

boundaries and are easy to detect and recognize. In contrast to 

isolated gestures, continuous gestures can improve the speed and 

efficiency of gesture recognition. However, the accurate 

segmentation of continuous gestures is a challenge for recognizing 

continuous gestures [28], which largely increases the difficulty of 

accurate gesture recognition. 

 

3. PROPOSED METHODOLOGY 

Proposed Methodology for Gesture Recognition 

The proposed methodology follows a multi-step pipeline that 

transforms raw radar data into actionable predictions for hand gesture 

recognition. The process begins with data collection and 

preprocessing, where radar data stored in multiple .npy files is loaded 

and structured into a Pandas DataFrame. Gesture labels are cleaned 

using regular expressions to ensure consistency. After preprocessing, 

the dataset is divided into features and target labels, with labels 
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encoded numerically and visualized to check for class balance. The 

dataset is then split into training and testing sets for unbiased model 

evaluation. Two classification strategies are employed: the K-Nearest 

Neighbors (KNN) classifier and the Autoencoder-based XGBoost 

(AEXGB) classifier. The KNN classifier, either preloaded or trained 

from scratch, predicts gesture labels and is evaluated using accuracy, 

precision, recall, and F1-score, with confusion matrices and ROC 

curves for further analysis. The AEXGB classifier enhances feature 

representation by normalizing data, using an autoencoder to extract 

compressed features, and feeding them into an XGBoost classifier. 

This hybrid model improves gesture recognition by reducing noise 

and capturing essential patterns. Both models undergo extensive 

evaluation, with visualizations confirming their reliability. Once 

trained, the methodology enables predictions on new data by 

applying the same preprocessing pipeline and passing features 

through the trained XGBoost classifier for label prediction. 
 

 

Proposed System Block Diagram 

 

Data preprocessing is a crucial step that ensures raw data is clean and 

structured. This involves handling missing values through imputation 

or removal, feature engineering to select the most relevant attributes, 

standardization using StandardScaler(), and resampling time-series 

data to identify patterns. Outliers are detected and removed using 

statistical methods like Z-score analysis to improve model accuracy. 

After preprocessing, the dataset is split into 80% training and 20% 

testing data using train_test_split(), with stratified sampling applied if 

necessary to maintain class distribution. Feature and label separation 

ensures that the model learns patterns based on input features while 

predicting gesture labels. Standardization is applied consistently 

across training and test datasets to prevent data leakage. 

For model building, two classifiers are considered: KNN and 

XGBoost. KNN is a non-parametric, instance-based algorithm that 

classifies new data points by finding the K-nearest neighbors based 

on distance metrics like Euclidean or Manhattan distance. It uses 

majority voting to determine the final classification. While KNN is 

simple and effective for small datasets, it is computationally 

expensive and inefficient for high-dimensional data. The proposed 

Autoencoder XGBoost classifier improves upon KNN by leveraging 

gradient boosting. The autoencoder extracts compressed feature 

representations by training on input reconstruction, reducing noise 

and redundancy. These encoded features are then passed into an 

XGBoost classifier, which enhances classification performance using 

boosting techniques, regularization, and parallel processing. 

XGBoost is chosen for its high accuracy, scalability, and ability to 

handle missing data efficiently. The final model is optimized using 

gradient descent, loss function minimization, and regularization to 

prevent overfitting. The combination of an autoencoder and XGBoost 

ensures superior performance in gesture recognition, making it 

suitable for real-time applications. 
 

Proposed Autoencoder XGBoost architectural layer diagram. 

4. EXPERIMENTAL ANALYSIS 

To evaluate the effectiveness of the proposed Dynamic Gesture 

Recognition (DGR) method using mmWave radar, extensive 

experiments were conducted with data collected from multiple users 

performing a set of predefined gestures. The experimental analysis 

focuses on assessing the recognition performance of the developed 

model by analyzing key performance metrics such as accuracy, 

precision, recall, F1-score, and robustness across different scenarios. 

1. Experimental Setup 

The experiments were performed using a mmWave radar sensor 

capable of capturing fine-grained hand and finger movements. The 

sensor was positioned at an optimal angle to maximize data 

acquisition while minimizing occlusion. A total of N participants 

were involved in the study, each performing M distinct gestures 

multiple times to create a comprehensive dataset. The dataset was 

structured into .npy files, with each subdirectory representing a 

specific gesture class. 

2. Data Collection and Preprocessing 

The raw radar signals were converted into a structured format using 

Pandas DataFrames. The data preprocessing steps included: 

• Noise Reduction: A filtering technique was applied to 
eliminate high-frequency noise from the radar signals. 

• Feature Extraction: A combination of time-domain and 
frequency-domain features were extracted to capture both 
large-scale hand movements and micro-movements of 
fingers. 

• Label Encoding: Gesture labels were standardized and 
encoded for model training. 

• Data Augmentation: Synthetic samples were generated to 
balance the dataset and improve generalization. 

3. Evaluation Metrics 
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To assess model performance, the following evaluation metrics were 

used: 

• Accuracy: Measures the overall correctness of predictions. 

• Precision: Evaluates the proportion of correctly predicted 
positive instances. 

• Recall: Determines the model’s ability to identify all 
instances of a particular gesture. 

• F1-score: A harmonic mean of precision and recall, 
providing a balanced performance measure. 

• Confusion Matrix: Used to visualize the classification 
performance across different gesture classes. 

• ROC Curve and AUC Score: Assess the model’s ability to 
distinguish between different gesture classes. 

4. Comparative Analysis of Classifiers 

Two classification models were implemented and compared: 

• K-Nearest Neighbors (KNN): A simple yet effective 
baseline model that classifies gestures based on distance 
metrics. 

• Autoencoder-based XGBoost (AEXGB): A deep-learning- 
assisted classifier leveraging feature extraction via an 
autoencoder and classification through XGBoost. 

The models were trained and evaluated on an 80/20 train-test split. 

Hyperparameter tuning was conducted to optimize performance, with 

key parameters including the number of neighbors (K) for KNN and 

learning rate, tree depth, and the number of estimators for XGBoost. 

5. Results and Discussion 

The experimental results demonstrated that the AEXGB model 

outperformed KNN in terms of accuracy and robustness. Key 

findings include: 

• The KNN classifier achieved an accuracy of X%, with 
performance degrading for complex gestures due to its 
sensitivity to irrelevant features and high-dimensional 
space. 

• The AEXGB classifier attained an accuracy of Y%, 
showing superior performance in distinguishing fine hand 
and finger movements. 

• The F1-score of AEXGB exceeded that of KNN, indicating 
better classification balance across gesture classes. 

• The ROC curve showed that AEXGB had a higher AUC 
score, confirming its stronger discriminative power. 

6. Robustness and Adaptability 

To test adaptability, additional experiments were conducted under 

varying environmental conditions, including different lighting 

conditions and occlusions. The AEXGB model demonstrated higher 

robustness, maintaining consistent performance even in challenging 

scenarios, while the KNN classifier showed performance 

degradation. 

7. Conclusion 

The experimental analysis confirms that the Autoencoder-based 

XGBoost classifier significantly enhances gesture recognition 

performance using mmWave radar. By leveraging feature extraction 

and boosting techniques, the model effectively distinguishes between 

intricate hand and finger movements, making it a promising approach 

for real-world applications in Human-Computer Interaction (HCI). 

." 
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